50- Ω load resistor and was analyzed by using a Tektonix 7912 AD transient digitizer liked to a Tektronix WP2252 signal processing system. All alkenes were distilled before use, and spectrograde solvents were employed. Further details appear above (see Discussion section), where particulars of the studies with $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CBr}$ and $p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CF}$ are described.

Acknowledgment. We thank the National Science Foundation for support of this work at both Rutgers and Columbia Universities. Additionally, the Columbia authors thank the Air Force

Office of Scientific Research for financial support.
Registry No. 1, 95911-65-2; 2, 87282-19-7; 3, 4460-46-2; 4, 4222-25-7; 5, 95911-64-1; TME, 563-79-1; $p-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CBr}, 104197-52-6 ; \mathrm{PhCBr}$, 14541-26-5; $\mathrm{PhCCl}, 19807-41-1 ;$ PhCF, 17825-75-1; $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CF}$, 104197-53-7; 1-hexene, 592-41-6; 1-bromo-1-(p-trifluoromethyl)-phenyl)-2-n-butylcyclopropane, 104197-48-0; 1-fluoro-1-(p-methoxy-phenyl)-2-n-butylcyclopropane, 104197-49-1; 1-fluoro-1-(p-methoxy-phenyl)-2,2,3,3-tetramethylcyclopropane, 104197-50-4; 1-bromo-1-(p -(trifluoromethyl)phenyl)-2,2,3,3-tetramethylcyclopropane, 104197-51-5.

Electronic Structure of Cyclic Bicalicenes

Toyonari Sugimoto, ${ }^{\dagger}$ Mitsuhiro Shibata, ${ }^{\dagger}$ Shigeo Yoneda, ${ }^{\dagger}$ Zen-ichi Yoshida, ${ }^{*}{ }^{\dagger}$ Yasushi Kai, ${ }^{\ddagger}$ Kunio Miki, ${ }^{\ddagger}$ Nobutami Kasai, ${ }^{\text {f }}$ and Tsunetoshi Kobayashi ${ }^{* 8}$

Contribution from the Department of Synthetic Chemistry, Kyoto University. Yoshida, Kyoto 606, Japan, the Department of Applied Chemistry, Osaka University. Yamadaoka. Suita. Osaka 565. Japan, and The Institute of Physical and Chemical Research, Wako. Saitama 351-01. Japan. Received June 9, 1986

Abstract

The novel π-electron system, pentacyclo[11.3.0.0.0.4. $0^{5.9} .0^{10.12}$] hexadeca-1,3,5,7,9,11,13,15-octaene ("cyclic bicalicene") has been prepared, in which two calicene units are joined in a head-to-tail manner. The X-ray crystallographic analysis indicates that the cyclic bicalicene skeleton is completely planar; i.e., the molecule has $D_{2 h}$ symmetry. Cyclic bicalicene is shown to have a characteristic absorption band at around 500 nm , which is interpreted as an intramoleculer charge-transfer band by a SCF-CI MO method. From the ${ }^{1} \mathrm{H}$ NMR spectra, the paramagnetic ring current due to peripheral 16π conjugation is not observed. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts suggest that a considerably large polarization of each calicene unit occurs in the cyclic system. The alternating polarization in cyclic bicalicene is also supported by the graph-theoretical and SCF MO calculations.

Cyclopropenylidenecyclopentadienide (calicene) (1) is a cross-conjugated π system, whose synthesis and characterization have been of keen interest. ${ }^{1}$ Thus far, the parent calicene has not been isolated. However, a number of calicene derivatives substituted with strong electron-donating and/or electron-withdrawing groups at the cyclopropenyl and/or cyclopentadienyl rings have been isolated as stable compounds. From the investigation of their electronic character, it has been shown that a polar structure (1B) contributes significantly to the ground state. ${ }^{2}$

Recently, we have succeeded in the isolation of the 3,11-bis-(tert-butylthio) derivative $2 a$ as a stable crystalline compound. ${ }^{3}$ This compound contrasts in stability to 5,6 -bis (tert-butylthio)calicene, ${ }^{1 /}$ which is unstable even at $-78^{\circ} \mathrm{C}$ and which evidences a large contribution of covalent structure (1A) based on NMR and IR spectral data. Furthermore, the parent system $\mathbf{2 b}$ has been isolated as stable crystals by the reductive desulfurization of 2a. ${ }^{3}$ As we briefly reported before, since $\mathbf{2 b}$ is an unprecedented "aromatic" system with a 16π-electron periphery, we have investigated its electronic structure and π-conjugatin mode based on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data, X-ray structural analysis, and

[^0]
\[

$$
\begin{array}{ll}
(\underline{2 a}): & X=S B u^{t} \\
(\underline{2 b}): & X=H \\
(\underline{2 c}): & X=S n B u_{3}^{n}
\end{array}
$$
\]

graph-theoretical and a modified Pariser-Parr-Pople-type SCF MO methods ("the variable integrals method I") and elucidated the cause of stabilization. In addition, acyclic bicalicene has been synthesized as a reference π system for cyclic bicalicene. Since the electronic spectrum of cyclic bicalicene is very characteristic, the character of electronic transition is interpreted by using the

[^1]Scheme I

configuration interaction method combined with the SCF MO method mentioned above.

Results and Discussion

Synthesis of 2a, 2b, 3, and 4 and X-ray Structure Analysis of $\mathbf{2 a}$ and $\mathbf{2 b}$. When 1,2-bis(tert-butylthio)-3,3-dichlorocyclopropene, obtained by the thionyl chloride treatment of bis(tert-butylthio)cyclopropenethione, ${ }^{4}$ was reacted with 2 equiv of lithium cyclopentadienide in THF at $-70^{\circ} \mathrm{C}, \mathbf{2 a}$ was isolated as a reddish purple solid in 10% yield. The reaction of $\mathbf{2 a}$ with tri- n-butylstannyl hydride in the presence of AIBN gave 3,11-bis(tri- n-butylstannyl) cyclic bicalicene (2c) (orange crystals, 42% yield). Conversion of $\mathbf{2 c}$ into $\mathbf{2 b}$ was unsuccessful by the usual acids or bases. It was, however, readily achieved by standing 2 c on silica gel for 0.5 h at room temperature (yield 40\%) (Scheme I). Silica gel is considered to act as a mild acid catalyst for the $\mathrm{Sn}-\mathrm{C}$ bond fission. Acyclic bicalicene 4 was formed by the reaction of 1,2-bis[bis(tert-butylthio)cyclopropenylio]cyclopentadienide ${ }^{5}$ with tetramethylammonium 1,2-dicyanocyclopentadienide ${ }^{6}$ in dichloromethane at $0^{\circ} \mathrm{C}$ as an unstable yellow solid in 5% yield along with 3 (13% yield). When 4 was allowed to stand in dichloromethane at room temperature, $\mathbf{3}$ was obtained as reddish purple crystals in 73% yield.

(3)

(4)

The single crystals of $\mathbf{2 a}$ and $\mathbf{2 b}$ were obtained by recrystallization from dimethoxyethane and chloroform, respectively. X-ray crystallographic analysis of 2a determined the centrosymmetric molecular structure shown in Figure 1 along with the selected bond distances and angles. No bond alternation is observed in the outer sixteen-membered and inner eight-membered ring systems. The outer sixteen-membered ring is nearly planar, the mean atomic deviation from the least-squares plane (Δ) being $0.026 \AA$. The inner eight-membered ring is planar ($\Delta=0.006 \AA$). The diheral angles between the eight- and five-membered rings ($\Delta=0.003$ \AA) and between the eight- and three-membered rings are 1.6° and 4.5°, respectively. Thus, the molecular structure excluding the tert-butylthio substituent has approximate $D_{2 h}$ symmetry. The chemically equivalent but significantly different structural parameters in a crystal structure are as follows: $\mathrm{C}_{1}-\mathrm{C}_{2}(1.388 \AA)$ and $\mathrm{C}_{4}-\mathrm{C}_{5}(1.401 \AA), \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\left(151.6^{\circ}\right)$ and $\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\left(156.4^{\circ}\right)$,

[^2]
(a)

(b)

Figure 1. (a) Molecular structure of 2 a shown by the ORTEP-II drawing. Thermal ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. The hydrogen atoms are shown as the spheres with radii of $0.1 \AA$. (b) Selected bond distances and angles in the molecular structure of 2 a . The estimated standard deviations are $0.002 \AA$ for $\mathrm{C}-\mathrm{S}$ and $0.003-0.004 \AA$ for $\mathrm{C}-\mathrm{C}$ bonds, 0.1° for $\mathrm{C}-\mathrm{S}-\mathrm{C}$ and $0.1-0.2^{\circ}$ for $\mathrm{S}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles. Distances and angles omitted in the figure are as follows: $\mathrm{C}_{17}-\mathrm{C}_{18}=1.522 \AA, \mathrm{C}_{17}-\mathrm{C}_{19}=1.524 \AA, \mathrm{C}_{17}-\mathrm{C}_{20}=1.534$ $\AA, \mathrm{S}-\mathrm{C}_{17}-\mathrm{C}_{18}=109.5^{\circ}, \mathrm{S}-\mathrm{C}_{17}-\mathrm{C}_{19}=109.9^{\circ}$, and $\mathrm{S}-\mathrm{C}_{17}-\mathrm{C}_{20}=103.4^{\circ}$.
$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{S}\left(143.1^{\circ}\right)$ and $\mathrm{S}-\mathrm{C}_{3}-\mathrm{C}_{4}\left(155.6^{\circ}\right)$, and $\mathrm{C}_{8}-\mathrm{C}_{1}-\mathrm{C}_{2}\left(127.5^{\circ}\right)$ and $\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\left(130.8^{\circ}\right)$. All the bond angles along the $\mathrm{S}-\mathrm{C}_{3}-$ $C_{4}-C_{5}$ system are larger than those along the $S-C_{3}-C_{2}-C_{1}$ system with the same trend of a slight elongation in $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond compared with the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond, indicating that the sixteen-membered ring deforms significantly from the $D_{2 h}$ symmetry. This deformation can be attributed mainly to the steric effect of the tert-butylthio substituent. The nonbonded distance between C_{18} and H_{6} is 3.23 \AA, which represents a normal van der Waals contact in considering the van der Waals radii of methyl carbon ($2.0 \AA$) and hydrogen (1.2 \AA).

The preliminary X-ray structure analysis of $\mathbf{2 b}$ has already been reported. ${ }^{3}$ The planarity of $\mathbf{2 b}$ is greater than that of $\mathbf{2 a}$. The Δ values of the sixteen-, eight-, and five-membered rings are 0.023 , 0.003 , and $0.010 \AA$, respectively. The dihedral angles between the eight- and five-membered ring planes and between the eightand three-membered ring planes are 0.6° and 0.8°, respectively. In addition to the high planarity of the molecule, the bond dis-

Figure 2. ${ }^{1} \mathrm{H}$ (a) and ${ }^{13} \mathrm{C}$ (b) NMR spectra of 2 a and the ${ }^{1} \mathrm{H}$ (c) and ${ }^{13} \mathrm{C}$ (d) NMR spectra of $\mathbf{2 b}$ measured in CDCl_{3}.
tances and angles of chemically equivalent but crystallographically independent parts show good coincidences. Thus, the mean differences are $0.005 \AA$ for bond distances and 0.4° for angles, respectively. In contrast with this, the corresponding values in 2 a are $0.007 \AA$ and 3.5°. From these data, the molecular symmetry of 2 b is concluded essentially to be $D_{2 h}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. For both of the cyclic bicalicenes (2a and 2b), the ${ }^{1} \mathrm{H}$ signals of the cyclopentadienyl ring are observed in the normal region ($\delta 6.4-7.4$) (Figure 2), indicating no upfield shift due to a paramagnetic ring current induced by the 16π-electron periphery. ${ }^{7}$ Indeed, when the chemical shifts of the ring protons of 3,11 -bis(tert-butylthio)-6,7-dicyano cyclic bicalicene (3) and the corresponding acyclic system $5,6,6^{\prime}$-tris-(tert-butylthio)- $2^{\prime}, 3^{\prime}$-dicyano-1, 5^{\prime}-bicalicene (4) are compared, no upfield shift of the cyclopentadienyl protons of $\mathbf{3}$ is observed compared with those of 4 as is seen in the following data: $\delta 6.40$ (t$), 6.95$ (dd), and 7.12 (dd) for 3 and $6.60(\mathrm{t}), 7.23(\mathrm{dd})$, and 7.37 (dd) for $4 .{ }^{8}$ On the other hand, the ${ }^{1} \mathrm{H}$ signal of the cy-
(7) The ${ }^{1} \mathrm{H}$ NMR spectral pattern of $\mathbf{2 a}$ and $\mathbf{2 b}$ was not changed even at $-80^{\circ} \mathrm{C}$. The measurement at lower temperatures than $-80^{\circ} \mathrm{C}$ was difficult because of its poor solubility.

(a)

(b)

Figure 3. (a) Charge distribution calculated by the VI/1 method. (b) ${ }^{13} \mathrm{C}$ NMR chemical shift values (δ).
clopropenyl part of $\mathbf{2 b}$ appeared at $\delta 7.91$, which is close to that of methylenecyclopropene. ${ }^{9}$ The equivalence of vicinal coupling constants ($J_{6,7}=J_{7,8}=3.66 \mathrm{~Hz}$) in 2a and 2b suggests that no bond alternation occurs at the $\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{8}$ bond of both the compounds. By use of the following equation which relates the vicinal coupling constant (J_{vic}) and π-bond order ($P_{\mathrm{r}, \mathrm{s}}$), $J_{\mathrm{vic}}=7.12 P_{\mathrm{r}, \mathrm{s}}-$ 1.18, the $P_{6,7}$ of the cyclopentadienyl bond of $\mathbf{2 b}$ is estimated to be $0.68 .^{10}$ This value is in the range characteristic of aromatic bonds ($0.4-0.7$) according to Streitwieser's criterion. ${ }^{10}$ The ${ }^{13} \mathrm{C}$ NMR of the skeletal carbons of $\mathbf{2 b}$ revealed only five signals (Figure 2), indicating overlap of the $\mathrm{C}_{6,8}, \mathrm{C}_{5,9}$, and $\mathrm{C}_{2,4}$ signals. From these results it is concluded that $\mathbf{2 a}$ and $\mathbf{2 b}$ belong to a $D_{2 h}$ point group. The ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling constants ($J_{13 \mathrm{c}-\mathrm{H}}$) for $\mathbf{2 b}$ are 167.9 Hz for $\mathrm{C}_{6}-\mathrm{H}_{6}\left(\mathrm{C}_{8}-\mathrm{H}_{8}\right), 164.4 \mathrm{~Hz}$ for $\mathrm{C}_{7}-\mathrm{H}_{7}$, and 235.5 Hz for $\mathrm{C}_{3}-\mathrm{H}_{3}$, respectively, so that the hybridizations of the skeletal carbon atoms that take part in the bonding to hydrogen atoms are sp^{2} for $\mathrm{C}_{6,7,8}$ and sp for C_{3}, respectively. ${ }^{11}$

The detailed examination of the ${ }^{13} \mathrm{C}$ chemical shifts of $\mathbf{2 b}$ provides valuable information on the electronic structure of the cyclic bicalicene system. The three-membered ring carbons (C_{3}, $\delta 117.8 ; \mathrm{C}_{2,4}, \delta 140.9$) appear at lower field than the unsaturated carbon of cyclopropene (δ 108.7). ${ }^{12}$ The low-field shift of $\mathrm{C}_{2.4}$ is not beyond the value of the cyclopropenium ion ($\delta 175.9$). ${ }^{13} \quad \mathrm{On}$ the other hand, the five-membered ring carbons ($\mathrm{C}_{5.9}, \delta 110.2$; $\mathrm{C}_{6.8}, \delta 130.5 ; \mathrm{C}_{7}, \delta 124.7$) are observed at higher field as compared with the olefinic carbons of cyclopentadiene ($\delta 133.3$ and 132.8). ${ }^{14}$ The carbons $\mathrm{C}_{5.79}$ are not upfield shifted beyond the value of cyclopentadienide ($\delta 102.0$). ${ }^{15}$ The degree of polarization on each calicene unit of $\mathbf{2 b}$ can be estimated from the ${ }^{13} \mathrm{C}$ chemical shifts of carbon atoms in cyclopropene, cyclopropenium ion, cyclopentadiene, and cyclopentadienide. The average ${ }^{13} \mathrm{C}$ chemical shifts of carbon atoms in three- and five-membered rings of $\mathbf{2 b}$ are $\delta 133.2$ and 121.2 , respectively. The 100% polarization of calicene in 2b corresponds to the cyclopropenium-cyclopentadienide structure, and the cyclopropene-cyclopentadiene structure is regarded as a nonpolar structure. Thus, each calicene unit in $\mathbf{2 b}$ involves $36-45 \%$ polarization, assuming that there is a linear relationship between the degree of calicene polarization
(8) Detailed examination of the ${ }^{1} \mathrm{H}$ chemical shifts together with the ${ }^{13} \mathrm{C}$ NMR data suggests strikingly different polarization between 3 and 4 . Thus, for the former the tetrapolar structure mainly contributes, while the latter has important contribution of the dipolar structure charged positively in the terminal three-membered ring and negatively in the other terminal five-membered ring, respectively. Because of such a dipolarization in 4, the terminal cyclopentadienyl carbon is preferably subjected to nucleophilic attack of the terminal cyclopropenyl carbon, followed by removal of tert-butylmercaptan to give a more stable 3, in which two alternate charges are dispersed in the four rings.
(9) (a) Billups, W. E.; Lin, L.-J.; Casserly, E. W. J. Am. Chem. Soc. 1984, 106, 3698 . (b) Staley, S. W.; Norden, T. D. J. Am. Chem. 1984, 106, 3699.
(10) Streitwieser, A. Molecular Orbital Theory for Organic Chemists; Wiley: New York, 1961; p 172.
(11) Being different from the case of ordinary systems, hybrid orbitals around the carbon atoms constructing strained ring systems are not equivalent.
(12) Günther, H.; Seel H. Org. Magn. Reson. 1976, 8, 299.
(13) Olah, G. A.; Staral, J. S.; Liang, G. J. Am. Chem. Soc. 1974, 96, 6233.
(14) Chertkov, V. A.; Grishin, Yu. K.; Sergeev, N. M. J. Magn. Reson. 1976, 24, 275.
(15) Spieseke, H.; Schneider, W. G. Tetrahedron Lett. 1961, 468
and the average ${ }^{13} \mathrm{C}$ chemical shifts of the three- and five-membered ring carbons. The above conclusion is well supported by the charge distribution calculated by the variable integrals method I (VI/1 method), ${ }^{16}$ as shown in Figure 3. There is satisfactory correspondence between the calicene polarization ($51-52 \%$) obtained by the VI/1 method and the above ${ }^{13} \mathrm{C}$ chemical shift values. From both the experimental and computational results, the negative charge is mainly distributed at the $\mathrm{C}_{5}, \mathrm{C}_{7}$, and C_{9} positions of the five-membered ring, while the positive charge is mainly distributed at the C_{2} and C_{4} carbons in the three-membered ring. On the basis of these data, pentadienyl anion-type and allyl cation-type charge distributions are considered for the five- and three-membered rings, respectively. Therefore, as a polar structure contributing to the ground state of cyclic bicalicene, a tetrapolar [16] annulene structure (2D) ${ }^{17}$ must be considered in addition to a respresentative structure (2C).

Graph-Theoretical Calculations. The resonance energy (RE) of $\mathbf{2 b}$ was calculated by using Aihara's graph-theoretical method, ${ }^{18}$ and its RE was compared with those of calicene itself, another isomer of cyclic bicalicene ($\mathbf{2}^{\prime}$), and some cyclic π systems (Table I). Also included in Table I are percent resonance energies $(\% \text { RE's })^{19}$ of these cyclic π systems. The RE (0.193β) and $\%$ RE (0.87) of $\mathbf{2 b}$ are much larger than those of calicene (0.038β and 0.36) and sesquifulvalene (0.023β and 0.15). Consequently, from a graph-theoretical standpoint, $\mathbf{2 b}$ can be regarded as a very stable aromatic system, which is supported by experiment. On the other hand, fulvene, triafulvene, and s-indacene have negative \%RE values. More remarkable is a large negative $\%$ RE value (-0.85) for the isomeric cyclic bicalicene, $\mathbf{2}^{\prime}$. These cyclic π systems are

(2)
anticipated to be antiaromatic. In order to elucidate the cause of the extraordinary stabilization of $\mathbf{2 b}$, the ring resonance energy (RRE), that is, the resonance energy of each ring of 2 b , was calculated by Aihara's $\beta \omega^{\prime} \omega^{\prime \prime}$ method. ${ }^{20}$ This result is summarized

[^3]Table I. Resonance Energies (REs) of Cyclic π-Electron-Conjugated Systems

system	RE, β^{a}	\% RE
$\mathbf{2 b}$	0.193	0.87
calicene	0.038	0.36
sesquifulvalene	0.023	0.15
fulvene	-0.082	-1.10
triafulvene	-0.145	-2.96
s^{\prime}-indacene	-0.056	-0.35
$\mathbf{2}^{\prime}$	-0.188	-0.848

${ }^{a}$ Calculated by the $\omega(\omega=1.4)$ technique.

(a)
0.040

(a)
0.182

(d)
0.002

(g)
-0.007

(j)

(b)
0.144

(e)
0.003

(h)
-0.002

(k)
-0.028

(c)
-0.004

(f)
0.005

(i)
0.009
0.010
ergies (RR
(RR
REs
Figure 4. Ring resonance energics (RREs) of each constituent ring of calicene (structures a and b) and $\mathbf{2 b}$ (structures $a-k$) calculated by the Aihara's $\beta \omega^{\prime} \omega^{\prime \prime}$ method.
together with the RRE values of calicene in Figure 4. The RREs of the three- and five-membered rings of 2 b are 0.182β (structure a) and 0.144β (structure b), respectively, which are strikingly larger than the values of the three- and five-membered rings of calicene (0.040β and 0.060β). Furthermore, it is noteworthy that
(20) This calculation method is improved by the ω technique considering bond alternation, because of the appearance of significant uncertainty in nonalternant polycyclic π-electron-conjugated systems: (a) Aihara, J. Bull. Chem. Soc. Jpn. 1980, 53, 2689. (b) Aihara, J. J. Am. Chem. Soc. 1985, 107, 298.

Figure 5. Electronic spectra of $2 \mathbf{a}$ and $\mathbf{2 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure 6. Electronic spectra of $\mathbf{3}$ and 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
destabilization due to peripheral 16π conjugation is surprisingly small (structure k, RRE $=-0.028 \beta$): only ca. 9% of resonance energy (-0.295β) of [16]annulene. ${ }^{21}$ The other consituent rings (structures $\mathrm{c}-\mathrm{j}$) offer a negligibly small contribution to the π conjugation of $\mathbf{2 b}$. The stability of $\mathbf{2 b}$ can be ascribed to both an increase in the desirable 2π (3 -membered ring) and 6π (5 membered ring) conjugation and a decrease in the undesirable 16π (peripheral 16 -membered ring) conjugation. The latter could be explained by the large contribution of the polar structure (2 C and 2D).

Electronic Spectra and Their Interpretations by the Modified Pariser-Parr-Pople-Type SCF MO Method (Variable Integrals Method I). The cyclic bicalicenes show three main electronic absorption bands at ca. 330, 380, and 500 nm (see Figure 5). The longest wavelength absorption band is very weak and characteristic of the cyclic bicalicene system, as is obvious from comparison of the electronic spectra of 3 and 4 (see Figure 6). In order to understand the character of this absorption, the electronic tran-

[^4]

Figure 7. Schematic representations of HOMOs and LUMOs of $2 a$ and $\mathbf{2 b}$. The areas of the circles are proportional to the squares of the LCAO coefficients. The blank and filled circles symbolize different signs of these coefficients.
sitions of 2 a and $\mathbf{2 b}$ were calculated by using the variable integrals method I (VI/1) with configuration interactions. ${ }^{16}$ The observed electronic spectral band characteristics with the calculated sin-glet-singlet (s-s) electronic transitions are summarized in Table II. Also, the HOMOs and LUMOs of $\mathbf{2 a}$ and $\mathbf{2 b}$ are schematically shown in Figure 7. In the case of 2b, by comparison of the observed and calculated electronic transitions, the weak band observed at $2.58 \mathrm{eV}(480 \mathrm{~nm})$ is assigned to the symme-try-forbidden $\mathrm{B}_{3 \mathrm{~g}} \pi^{*} \leftarrow \pi$ transition which is mainly contributed from the LU- π - MO $\leftarrow \mathrm{HO}-\pi$-MO excitation configuration (see Figure 7). The two strong bands at $3.23 \mathrm{eV}(384 \mathrm{~nm})$ and 3.73 $\mathrm{eV}(332 \mathrm{~nm})$ are assigned as the $\mathrm{B}_{1 \mathrm{u}} \pi^{*} \leftarrow \pi$ and $\mathrm{B}_{2 \mathrm{u}} \pi^{*} \leftarrow \pi$ bands which are polarized along the long (z) and short (y) molecular axes, respectively. The former is mainly contributed from the $\mathrm{LU}-\pi-\mathrm{MO} \leftarrow$ second $\mathrm{HO}-\pi$-MO excitation configuration. The strong band at $5.08 \mathrm{eV}(244 \mathrm{~nm})$ may be assigned as the $\mathrm{B}_{11} \pi^{*}$ $\leftarrow \pi$ transition polarized along the long molecular axis. All the transitions are accompanied by electron migrations (ca. 0.2-0.3 unit) from the five-membered rings to the three-membered rings. Incidentally as for the ground state the present calculation suggests that the tetrapolar structure contributes considerably to the ground state of 2b. Normally, electronic transitions accompanied by electron migration are significantly influenced by the solvent. However, the electronic spectrum of 2b (and also 2a) is not subject to solvent shifts due to the reason that $\mathbf{2 b}$ cannot have a nonzero dipole moment because of its $D_{2 h}$ symmetry. A similar tendency is seen for 2 aa (Table II). The π-MOs higher than the sixth HO- π-MO are essentially the same as those of 2 b in order and shape, although the former are slightly shifted to higher energy than the corresponding ones of $\mathbf{2 b}$ because of the perturbation of the sulfur atom lone-pair orbitals (see Figure 7). Consequently, the electronic spectrum of $2 a$ is expected to be rather similar to that of $\mathbf{2 b}$ in the lower energy region.

Conclusion

The extraordinary stability of the cyclic bicalicene system is attributed to the unexpectedly large contribution to the ground state of the tetrapolar structures 2C and 2D and to the marked suppression of destabilization due to peripheral 16π conjugation (2A and 2B). Thus, the tetrapolar structures, which are characterized by the cyclic and alternate distribution of the charged parts, should be responsible for the highly polarized calicene units.

Table II. Calculated and Observed Electronic Transitions

sym		calcd				obsd ${ }^{\text {b }}$		
		E^{0-8}, eV	f	main CI component ${ }^{a}$		$\lambda_{\text {max }}$, nm	$\underset{\mathrm{eV}}{E_{\max }},$	$\frac{\log \left(\epsilon_{\max } /\right.}{\left.10^{3} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)}$
2b	B_{38}	2.28	0.0	$9 \leftarrow 8$	0.912	480	2.58	2.81
	B_{14}	3.74	0.957	$9 \leftarrow 7$	0.929	384	3.23	4.20
	$\mathrm{B}_{2 \mathrm{u}}$	4.09	0.772	$9 \leftarrow 6$	0.668	332	3.73	4.42
				$10 \leftarrow 8$	0.692			
	$\mathrm{A}_{\mathbf{g}}$	4.35	0.0	$9 \leftarrow 5$	0.578			
				$10 \leftarrow 7$	0.742			
	$\mathrm{B}_{2 \mathrm{u}}$	4.67	0.041	$9 \leftarrow 6$	0.675			
				$10 \leftarrow 8$	-0.682			
	$\mathrm{A}_{\mathbf{g}}$	4.92	0.0	$9 \leftarrow 8$	0.357			
				$10 \leftarrow 6$	-0.566			
				$11 \leftarrow 5$	0.485			
				$12 \leftarrow 7$	0.529			
	$\mathrm{A}_{\mathbf{g}}$	4.94	0.0	$9 \leftarrow 5$	0.668			
				$10 \leftarrow 7$	-0.619			
				$11 \leftarrow 8$	0.385			
	B_{14}	5.19	0.384	$10 \leftarrow 5$	0.856	244	5.08	4.63
				$11 \leftarrow 6$	-0.339			
	$\mathrm{B}_{2 \mathrm{u}}$	5.29	0.096	$11 \leftarrow 7$	0.886			
				$12 \leftarrow 5$	0.428			
	$\mathrm{B}_{3 \mathrm{~g}}$	5.33	0.0	$10 \leftarrow 6$	0.686			
				$12 \leftarrow 7$	0.641			
	B_{14}	5.35	1.245	$12 \leftarrow 8$	0.895			
2a	$\mathrm{B}_{3 \mathrm{~g}}$	2.14	0.0	$11 \leftarrow 10$	0.928			
	B_{14}	3.66	0.891	$11 \leftarrow 9$	0.933	380	3.26	4.35
	$\mathrm{B}_{2 \mathrm{u}}$	4.01	0.977	$11 \leftarrow 8$	0.611	341	3.64	4.63
				$12 \leftarrow 10$	0.739			
	$\mathbf{A g}_{\mathbf{g}}$	4.24	0.0	$11 \leftarrow 7$	0.594			
				$12 \leftarrow 9$	0.747			
	$\mathrm{B}_{2 \mathrm{u}}$	4.55	0.047	$11 \leftarrow 8$	0.727			
				$12 \leftarrow 10$	-0.617			
	$\mathbf{A g}_{\mathbf{g}}$	4.86	0.0	$11 \leftarrow 7$	0.632			
				$12 \leftarrow 9$	-0.577			
				$13 \leftarrow 10$	0.493			
	$\mathrm{B}_{3 \mathrm{~g}}$	4.87	0.0	$11 \leftarrow 10$	0.317			
				$12 \leftarrow 8$	-0.484			
				$13 \leftarrow 7$	0.480			
	B_{14}	5.14	1.234	$12 \leftarrow 7$	-0.608	246	5.04	4.43
				$13 \leftarrow 8$	0.345			
				$14 \leftarrow 10$	0.687			
	$\mathrm{B}_{2 \mathrm{u}}$	5.15	0.093	$13 \leftarrow 9$	0.877			
				$14 \leftarrow 7$	0.420			
	A_{8}	5.21	0.0	$11 \leftarrow 7$	-0.447			
				$13 \leftarrow 10$	0.832			
	B_{14}	5.28	0.445	$12 \leftarrow 7$	0.672			
				$14 \leftarrow 10$	0.642			

${ }^{a}$ The transition indicated as $j \leftarrow i$ refers to a one-electron excitation from the valence π orbital i to j. The second column gives the CI coefficient of the configuration $j \leftarrow i$. ${ }^{b}$ Solvent: hexane for $\mathbf{2 b}$ and cyclohexane for $\mathbf{2 a}$.

On the other hand, the latter result is important for understanding the bonding character of 16π electrons in the periphery, although the smaller circuits are considered to make large contributions. ${ }^{21}$ As the other different bonding mode, two classical structures (2A and 2B) are conceivable, which are in equilibration. However, the present X-ray analysis and the NMR measurement at -78 ${ }^{\circ} \mathrm{C}$ do not provide enough evidence to support the equilibration.

Experimental Section

Melting points were determined with a YANACO MP-micro melting point apparatus and are uncorrected. Microanalyses were performed by the Microanalysis Center, Kyoto University. NMR spectra were recorded on a JEOL FX-90Q (${ }^{13} \mathrm{C}$), JEOL JNM-PMX-60 $\left({ }^{1} \mathrm{H}\right)$, or Varian HA-100D (${ }^{1} \mathrm{H}$) spectrometer, and chemical shift values are given in parts per million (ppm) relative to internal tetramethylsilane. Mass spectra were obtained with a JEOL JMS-DX 300 spectrometer and IR spectra with a JASCO A-102 diffraction grating infrared spectrophotometer. Electronic spectra were measured on a Hitachi 340 recording spectrophotometer.

3,11-Bis(tert-butylthio) Cyclic Bicalicene (2a). To a solution of cyclopentadiene ($1.98 \mathrm{~mL}, 24 \mathrm{mmol}$) in THF (100 mL) was added 1.55 M n-butyllithium in hexane ($15.5 \mathrm{~mL}, 24 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon. After the solution was stirred for 0.5 h , a THF solution of 1,2 -bis(tert-butyl-thio)-3,3-dichlorocyclopropene (12.0 mmol), obtained by the reaction of bis(tert-butylthio)cyclopropenethione ${ }^{4}$ with thionyl chloride, was dropwise
added to the solution at $-70^{\circ} \mathrm{C}$ under argon. After stirring for further 2 h , the reaction mixture was poured into cold water and then extracted with dichloromethane. The extract was dried over anhydrous sodium sulfate and concentrated in vacuo. The brown tarry residue was purified by preparative TLC on silica gel with dichloromethane-petroleum ether (1:2), followed by recrystallization from 1,2-dimethoxyethane to give 2a $(235 \mathrm{mg})$ as reddish purple crystals in 10% yield: $\mathrm{mp} 190-200^{\circ} \mathrm{C} \mathrm{dec}$; IR (KBr) 2950, 1815, 1555, 1418, 1350, 1270, 1072, 740, $721 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \epsilon) \mathrm{nm}(4.51), 266$ (4.49), 337 (4.74), 372 (4.43), 413 (4.39), ca. $525(2.74) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 135.9\left(\mathrm{C}_{2,4.10 .12}\right), 128.2$ $\left(\mathrm{C}_{3.11}\right), 127.5\left(\mathrm{C}_{6,8.14 .16}\right), 123.0\left(\mathrm{C}_{7.15}\right), 109.0\left(\mathrm{C}_{1.59 .913}\right), 48.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; MS, m/e $376\left(\mathrm{M}^{+}\right), 320,264$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~S}_{2}: \mathrm{C}, 76.55 ; \mathrm{H}, 6.42 ; \mathrm{S}, 17.03$. Found C, $76.69 ; \mathrm{H}, 6.51 ; \mathrm{S}$, 16.97.

3,11-Bis(tri-n-butylstannyl) Cyclic Bicalicene (2c). In the presence of AIBN ($15 \mathrm{mg}, 0.09 \mathrm{mmol}$), a mixture of $2 \mathrm{a}(30 \mathrm{mg}, 0.08 \mathrm{mmol})$ and tri- n-butyltin hydride ($70 \mathrm{mg}, 0.24 \mathrm{mmol}$) in dry benzene (5 mL) was allowed to reflux for 3 h under argon. After the solvent was evaporated, the residue was chromatographed on silica gel with dichloromethanehexane ($1: 2$) to afford 2 c (26 mg) and 3-(tert-butylthio)-11-tri- n -butylstannyl cyclic bicalicene (12 mg) as an orange solid and a purplish orange syrupy oil in 42% and 27% yields, respectively: orange crystals (from MeOH); $\mathrm{mp} 60-61^{\circ} \mathrm{C}$; IR (KBr) 2910, 1769, 1539, 1410, 1350, $1153,1080,740 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 240 \mathrm{~nm}(4.76), 313$ (4.75), 369 (4.60), ca. $460(\mathrm{br}, 3.21) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.72(\mathrm{~d}, 4 \mathrm{H}$, $\left.\mathrm{H}_{6,8,14,16}, J=3.8 \mathrm{~Hz}\right), 6.36\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}_{7.15}, J=3.8 \mathrm{~Hz}\right), 0.8-1.8(\mathrm{br} \mathrm{m}, 54$
$\mathrm{H}, \mathrm{Bu}) ; \mathrm{MS}, m / e 778\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Sn}_{2}: \mathrm{C}, 61.73 ; \mathrm{H}$, 7.77. Found: C, 61.67 ; H, 8.00 .

Cyclic Bicalicene (2b). A mixture of $\mathbf{2 c}(26 \mathrm{mg}, 0.33 \mathrm{mmol}$) and silica gel (10 g , Merck, Kieselgel $60 \mathrm{PF}_{254}$) was kept for 0.5 h at room temperature and then was extracted with dichloromethane. The solution was concentrated in vacuo to provide an orange-red semisolid, which was purified by preparative TLC on silica gel with dichloromethane-petroleum ether ($2: 1$) to give pure $\mathbf{2 b}$ (2.7 mg) in 40% yieid: orange plates (from CHCl_{3}); mp $125-130^{\circ} \mathrm{C} \mathrm{dec}$; IR (KBr) 3100, 1782, 1550, 1420, $1346,1240,745 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \epsilon) 241 \mathrm{~nm}(4.63), 328$ (4.51), 390 (4.27), ca. 470 (2.81); MS, $m / e 200\left(\mathrm{M}^{+}\right), 174,149,100$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{8}$: C, 95.97 ; H, 4.03. Found: C, 95.72; H, 4.23.

3,11-Bis(tert-butylthio)-6,7-dicyano Cyclic Bicalicene (3) and $5,6,6^{\prime}$-Tris(tert-butylthio)-2', $\mathbf{3}^{\prime}$-dicyano-1,5'-bicalicene (4). To a solution of 1,2-bis[bis(tert-butylthio)cyclopropenylio]cyclopentadienide ${ }^{5}$ (200 mg , 0.338 mmol) in dichloromethane (8 mL) was added tetramethylammonium 1,2-dicyanocyclopentadienide ${ }^{6}$ ($64 \mathrm{mg}, 0.338 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon. After stirring at $0^{\circ} \mathrm{C}$ overnight, the reaction mixture was concentrated in vacuo. The residue was purified by preparative TLC on silica gel with dichloromethane-petroleum ether to afford $3(19 \mathrm{mg})$ and 4 (8 mg) as reddish purple crystals and an unstable yellow solid in 13% and 5% yields, respectively. A solution of $4(5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dichloromethane (3 mL) was allowed to stand overnight. After the solvent was evaporated, the residue was purified on silica gel with dichloro-methane-petroleum ether to give 3 (3 mg) in 73% yield. 3: mp 224-227 ${ }^{\circ} \mathrm{C}$ dec; IR (KBr) 2975, 2200, 1818, 1538, 1423, 1320, 1268, 1161, 1050, $750 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \epsilon) 268 \mathrm{~nm}(\mathrm{sh}, 4.45), 277(4.49), 310$ (sh, 4.21), 344 (4.59), 365 (4.37), 413 (4.25), 520 (2.88); MS, $m / e\left(\mathrm{M}^{+}\right)$ calcd 426.1224, obsd 426.1206. 4: IR (KBr) 2960, 2930, 2200, 1803, $1760,1503,1320,1044,983,935,738 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \epsilon)$ $246 \mathrm{~nm}(4.55) 260$ (sh, 4.49), 344 (4.60), 432 (4.35), 448 (sh, 4.32).

X-ray Structure Analyses of 2a and 2b. Crystal Data. 2a: $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~S}_{2}$, $\mathrm{fw}=376.6$, monoclinic, $P 2_{1} / n, a=6.022$ (1) $\AA, b=11.450(1) \AA, c=$ 15.386 (1) $\AA, \beta=103.44$ (1) ${ }^{\circ}, U=1031.9$ (2) $\AA^{3}, Z=2, D_{\mathrm{x}}=1.212$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, D_{\mathrm{m}}=1.22 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, F(000)=400, \mu(\mathrm{CuK} \alpha)=22.7 \mathrm{~cm}^{-1} .2 \mathrm{~b}:$ $\mathrm{C}_{16} \mathrm{H}_{8}, \mathrm{fw}=200.2$ monoclinic, $P 2_{1} / c, a=9.587$ (1) $\AA, b=5.964$ (1) $\AA, c=9.968$ (1) $\AA, \beta=117.01(1)^{\circ}, U=507.7$ (1) $\AA^{3}, Z=2, D_{\star}=$ $1.309 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, D_{\mathrm{m}}=1.30{\mathrm{~g} \cdot \mathrm{~cm}^{-3}, F(000)}^{2} 208, \mu(\mathrm{CuK} \alpha)=5.8 \mathrm{~cm}^{-1}$.

X-ray diffraction data were collected on a Rigaku four-circle diffractometer using nickel-filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation. Integrated intensities were measured by the $\theta-2 \theta$ scan technique at a 2θ scan rate of 2 deg $\min ^{-1}$ and a scan width of $\Delta 2 \theta=(2.0+0.70 \tan \theta)^{\circ}$. The background intensities were measured for 10 s at both ends of a scan. Three standard reflections were measured after every 61 reflections in order to monitor the radiation damage and the change of the crystal orientations. No significant intensity decay of the standard reflections was observed for both of the crystals. For the crystal $\mathbf{2 b}$ the two crystallographically equivalent sets of reflections were measured and averaged to improve the accuracy of the structure analysis.

The crystal structures of $\mathbf{2 a}$ and $\mathbf{2 b}$ were solved by use of direct methods (MULTAN-78) ${ }^{22}$ and refined by the block-diagonal least-squares

[^5]procedure (HBLS-V) ${ }^{23}$ using the reflections of $\left|F_{\mathrm{o}}\right| \geq 3 \sigma\left(F_{\mathrm{o}}\right)$, the function minimized being $\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{d}}\right|\right)^{2}$. The weighting function used was $\left|F_{\mathrm{o}}\right|$ $<F_{\max }, w=1$, and $\left|F_{\mathrm{o}}\right| \geq F_{\max }, w=\left(F_{\max } /\left|F_{\mathrm{o}}\right|\right)^{-2}$, where $F_{\max }=20$ for both of the crystals. All the non-hydrogen atoms were refined by supposing the anisotropic thermal parameters together with the hydrogen atoms with isotropic thermal parameters. The final R indexes were 0.035 ($R_{\mathrm{w}}=0.041$) for 2 a and 0.039 ($R_{\mathrm{w}}=0.045$) for 2 b , respectively

Computational. Graph-Theoretical Calculation. The resonance energy of cyclic calicene was calculated by Aihara's ω-technique ($\omega=1.4$) method. The resonance energy of each constituent ring (RRE) of $\mathbf{2 b}$ and calicene itself was also calculated by Aihara's $\beta \omega^{\prime} \omega^{\prime \prime}$ method.

Variable Integrals Method I. The electronic states of $\mathbf{2 a}$ and $\mathbf{2 b}$ were calculated by the variable integrals method I (VI/1), a modified Paris-er-Parr-Pople-type SCF CI method for π-electron systems which takes into account the changes in π-electron densities in the evaluation of atomic integrals during the SCF procedures. The geometrical structures of $\mathbf{2 a}$ and $\mathbf{2 b}$ were assumed to be of $D_{2 h}$ symmetry based on the X-ray diffraction analysis.

X-ray Structure Analysis. The atomic scattering factors for non-hydrogen atoms were taken from International Tables for X-ray Crystallography, Vol. IV, ${ }^{24}$ and those for hydrogen atoms from Stewart et al. ${ }^{25}$ All the crystallographic calculations were carried out by the use of UNICS System, Osaka, on an ACOS 850 computer at the Crystallographic Research Center, Institute for Protein Research, Osaka University.

Acknowledgment. We are deeply grateful to Prof. Jun-ichi Aihara (Shizuoka University) for the graph-theoretical calculations of calicene and cyclic bicalicene.

Registry No. 2a, 72649-42-4; 2b, 73091-52-8; 2c, 73625-08-8; 3, 104464-02-0; 4, 104464-01-9; 1,2-bis(tert-butylthio)-3,3-dichlorocyclopropane, 72649-41-3; 1,2-bis[bis(tert-butylthio)cyclopropenylio]cyclopentadienide, 89821-02-3; tetramethylammonium 1,2-dicyanocyclopentadienide, 42491-32-7.

Supplementary Material Available: Figure S1 of the molecular structure of 2b and Tables S1-SIV and SVI-SVIII listing anisotropic temperature factors for non-hydrogen atoms, final atomic parameters for non-hydrogen atoms, fractional atomic coordinates and isotropic temperature factors for hydrogen atoms, and interatomic bond distances and angles concerning the hydrogen atoms for $\mathbf{2 a}$ and $\mathbf{2 b}$ (9 pages); tables of observed and calculated structure factors (10 pages). Ordering information is given on any current masthead page.
(23) Ashida, T. HBLS-V, The Universal Crystallographic Computing System, Osaka, The Computer Center, Osaka University, 1979.
(24) International Tables for X-Ray Crystallography, Kynoch: Birmingham, 1974; Vol. IV, p 71.
(25) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175.

[^0]: ${ }^{\dagger}$ Kyoto University.
 IOsaka University.
 ${ }^{3}$ The Institute of Physical and Chemical Research.

[^1]: (1) (a) Johns, W. M.; Pyron, P. S. J. Am. Chem. Soc. 1965, 87, 1608. (b) Ueno, M.; Murata, I.; Kitahara, Y. Tetrahedron Lett. 1965, 6, 2967. (c) Kende, A. S.; Izzo, P. T. J. Am. Chem. Soc. 1965, 87, 4162. (d) Prinzbach, H.; Fischer, U. Angew. Chem. 1965, 77, 258. (e) Bergmann, E. D.; Agranat, I. Tetrahedron 1966, 22, 1275. (f) Prinzbach, H.; Fischer, U. Helv. Chim. Acta 1967, 50, 1669. (g) Prinzbach, H.; Woischnik, E. Helv. Chim. Acta 1969, 52, 2472. (h) Prinzbach, H. Pure Appl. Chem. 1971, 28, 281. (i) Yoshida, Z. Pure Appl. Chem. 1982, 54, 1059.
 (2) (a) Dewar, M. J. S.; Gmeidner, G. J. Tetrahedron 1965, 2l, 3423. (b) Nakajima, T.; Kohda, S.; Tajiri, A.; Karasawa, S. Tetrahedron 1967, 23, 2189.
 (3) Yoneda, S.; Shibata, M.; Kida, S. Yoshida, Z., Kai, Y.; Kasai, N. Angew. Chem. 1984, 96, 75; Angew. Chem., Int. Ed. Engl. 1984, 23. 63.

[^2]: (4) Miki, S. Ph.D. Thesis, Kyoto University, 1978. This compound was synthesized by the reaction of tris(tert-butylthio)cyclopropenium perchlorate with sodium bicarbonate in refluxing ethyl acetate in 90% yield.
 (5) Yoshida, Z.; Shibata, M.; Kida, S.; Miki, S.; Sugimoto, T.; Yoneda, S. Tetrahedron Lett. 1984, 345.
 (6) Webster, O. W. J. Am. Chem. Soc. 1966, 88, 3046.

[^3]: (16) (a) Yoshida, Z.; Kobayashi, T. Theor. Chim. Acta 1970, 19, 377; (b) Bull. Chem. Soc. Jpn. 1972, 45, 316.
 (17) The ${ }^{13} \mathrm{C}$ NMR and MINDO $/ 3$ calculations of $\mathbf{2 b}$ indicate similar electron distributions to the pentadienyl anion and allyl cation on the five- and three-membered rings, respectively. This type of polar structure can be regarded as tetrapolar [16]annulene structure 2D, which is produced by tetrapolarization of the peripheral 16π electrons along the outer σ framework, whose shape could assist this polarization. Such a polarization should have a minor contribution but should be also useful for stabilization of the planar 16π system.
 (18) (a) Aihara, J. J. Am. Chem. Soc. 1976, 98, 2750. (b) Aihara, J. Pure Appl. Chem. 1982, 54, 1115.
 (19) The \%RE is defined as 100 times the resonance energy divided by the energy of the "localized" reference structure. This value is quite consistent with experimental stability for a variety of π-electron-conjugated systems: $\% \mathrm{RE}>0.50$, generally stable; \%RE <-0.50, extremely unstable. The $\%$ RE values of the other representative π-electron-conjugated systems are as follows: benzene, 3.53 ; cyclooctatetraene, -5.80 ; naphthalene, 2.92; azulene, 0.42 ; [10]annulene, 1.25; [12]annulene, -2.57 .

[^4]: (21) In correspondence with this result Randic has shown with his method of conjugated circuits that larger annulene circuits make only a minor contribution compared with smaller ones for both neutral and ionic conjugated polycyclic systems (Randici, M. Chem. Phys. Lett. 1976, 38, 69, J. Phys. Chem. 1982, 86, 3970). By using the REPE (resonance energies per π electron) method, Hess and Schaad et al, have also come to a similar conclusion (Hess, B. A., Jr.; Schaad, L. J.; Agranat, I. J. Am. Chem. Soc. 1978, 100,5268). However, the exceptional case was found by us in cyclopenta[e] azulenide, in which a peripheral 14π circuit contributes much more to the conjugation than the cyclopentadienyl 6π circuit (Yoshida, Z.; Shibata M.; Sakai, A.; Sugimoto, T. J. Am. Chem. Soc. 1984, 106, 6383). Therefore, further study should be needed for more detailed understanding of the conjugation mode in conjugated polycyclic systems.

[^5]: (22) Main, P.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercq, J. P.; Woolfson, M. M. multan-78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, University of York, England, and Louvain, Belgium, 1978.

